Advanced Signal Processing and Machine Learning Approaches for EEG

نویسنده

  • Vijayakumar Bhagavatula
چکیده

Electroencephalography (EEG) offers a non-invasive brain-imaging technology with potential to extract user intent from brain signals. This can offer a potential method for dispersed soldiers to communicate silently with one another. The usual interface for acquiring EEG signals may house 128 or more electrodes. Each EEG signal may be sampled at KHz sampling rates and may last for a few seconds. Thus the number of samples used to represent each trial can be large. The goal of this short-term innovative research (STIR) project was to investigate innovative sample and channel (i.e., EEG electrode) selection methods to reduce the storage and computational complexity in analyzing EEG signals. In experiments aimed at determining the redundancy in imagined speech EEG signals, it was observed that EEG data has limited spatial redundancy, but large temporal redundancy. In another set of experiments, we investigated the classification of two imagined speech syllables (namely “Ba” and “Ku”) from imagined speech EEG signals. Using all good channels, only one of the seven volunteer subjects produced "better than chance" classification accuracy of about 60%. By selecting specific electrodes, two subjects yielded better-than-chance results with recognition rates close to 60% for all trials. Overall classification rates appear to have improved slightly by the selection of electrodes, indicating that imagined speech classification performance can be improved by careful selection of EEG electrodes. (a) Papers published in peer-reviewed journals (N/A for none) List of papers submitted or published that acknowledge ARO support during this reporting period. List the papers, including journal references, in the following categories: (b) Papers published in non-peer-reviewed journals or in conference proceedings (N/A for none) 0.00 Number of Papers published in peer-reviewed journals: Number of Papers published in non peer-reviewed journals: (c) Presentations 0.00 Number of Presentations: 0.00 Non Peer-Reviewed Conference Proceeding publications (other than abstracts): Number of Non Peer-Reviewed Conference Proceeding publications (other than abstracts): 0 Peer-Reviewed Conference Proceeding publications (other than abstracts): (d) Manuscripts Number of Peer-Reviewed Conference Proceeding publications (other than abstracts): 0 Number of Manuscripts: 0.00

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A hybrid EEG-based emotion recognition approach using Wavelet Convolutional Neural Networks (WCNN) and support vector machine

Nowadays, deep learning and convolutional neural networks (CNNs) have become widespread tools in many biomedical engineering studies. CNN is an end-to-end tool which makes processing procedure integrated, but in some situations, this processing tool requires to be fused with machine learning methods to be more accurate. In this paper, a hybrid approach based on deep features extracted from Wave...

متن کامل

A Time-Frequency approach for EEG signal segmentation

The record of human brain neural activities, namely electroencephalogram (EEG), is generally known as a non-stationary and nonlinear signal. In many applications, it is useful to divide the EEGs into segments within which the signals can be considered stationary. Combination of empirical mode decomposition (EMD) and Hilbert transform, called Hilbert-Huang transform (HHT), is a new and powerful ...

متن کامل

EEG Artifact Removal System for Depression Using a Hybrid Denoising Approach

Introduction: Clinicians use several computer-aided diagnostic systems for depression to authorize their diagnosis. An electroencephalogram  (EEG) may be used as an objective tool for early diagnosis of depression and controlling it from reaching a severe and permanent state. However, artifact contamination reduces the accuracy in EEG signal processing systems. Methods: This work proposes a no...

متن کامل

Composite Kernel Optimization in Semi-Supervised Metric

Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...

متن کامل

A review on EEG based brain computer interface systems feature extraction methods

The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...

متن کامل

A review on EEG based brain computer interface systems feature extraction methods

The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010